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A family of algorithms for nonlinear approximation is defined by point-to-set-
maps. Then Zangwill’s general convergence theorem is used for the convergence
proof of a class of methods for the nonlinear approximation problem with infinitely
many linear constraints. Numerous well-known techniques are included and
generalized in this way. The convergence proof presented here is kept so general
that convergence could be shown by it for a variety of similar methods.

1. INTRODUCTION

DEerFINITION 1.1. Let 4 and B be sets, and let P(B) be the set of all
subsets of B. Then a map Z: A —» P(B) which assigns to each a € 4 exactly
one subset of B is called a point-to-set map.

Zangwill |39, 40] seems to have been the first who fully used point-to-set
maps in the field of mathematical programming. He recognized, in
particular, that an algorithm can be defined by a point-to-set map
Z: A - P(B) where for a; € A given, the iteration of the algorithm generates
a sequence (a,) such that a, € Z(a,_,). Zangwill states then a general
convergence theorem, the main assumption of which is the closedness of the
algorithmic map Z. In the German literature recently, Zangwill’s theorem
has been systematically developed and applied to the proof of the
convergence of numerous nonlinear programming algorithms in the book of
Horst [15). By means of simple examples it has been shown there that the
assumptions of the convergence theorem can be only slightly relaxed.
Extensions of Zangwill’s theorem can, for instance, be found in the papers of
Huard [16] and Tishyadhigama e al. [35]. For further references and infor-
mation on point-to-set maps, we refer, in particular, to [23] and its
introduction by Huard.

While the use of point-to-set maps and their topological concepts requires
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a certain inconvenient terminology, it offers on the other hand a clear insight
into the conditions for the convergence of algorithms as well as enables the
treatment of a broad class of methods in a unified way. Further, parts of the
algorithms can be altered without touching the others and so without making
a completely new convergence proof necessary. In this paper we want to
make use of Zangwill’s theorem for the convergence proof of a class of
algorithms that seek a stationary point, i.e., a saddle point or a local
optimum, of the following nonlinear approximation problem:

Find 4 € E such that z(d) < z(a) for all a € E where z(a) = | f — F(a)}.
(L1)

Thereby 4 = R? is an open set and E < A4 is a nonempty set of feasible
points; further F: R? - C(T) is a given mapping with C(T) being the space of
all continuous functions on a compact set T R" and f € C(T) is a given
function which shall be approximated. The norm | - Jon C(T) can be chosen
here arbitrarily.

DEFINITION 1.2. We say F(4) for 4 € E is a locally best approximation
to fon T with respect to E if there exists an ¢ > 0 such that

|/ —F@I<|f-F@| VvYa€ENU;

where Uj is an e-neighborhood of 4.

The existence of best approximations is usually difficult to verify and not
investigated here. We refer the reader to the relevant literature.

In Section 2 some topological concepts of point-to-set maps as well as
Zangwill’s general convergence teorem are provided. A family of algorithms
for problem (1.1) is then defined in Section 3 wherein one has a certain
freedom in establishing the set £2(a) of feasible directions at a € E. For some
choices of £ theorems on the convergence of the corresponding algorithms
are stated. The main part of their proofs, which are summarized in
Appendix 2, consists of verifying the closedness of the algorithmic map. It
results here in the proof of the continuity of a mapping a— m(a) which
assigns to each parameter vector a € E the minimal value m(a) of a certain
linear optimization problem. To show the latter, results on the continuous
dependence of the feasible set and the optimal value in an optimization
problem on the parameters are used. The corresponding statements which we
need here can be found in Krabs [18)] and are cited in Appendix 1. They are
also naturally expressed in terms of point-to-set maps. Finally we present in
Section 4 an exemplary list of references to algorithms pertaining to the class
considered here and to further information on them. Thereby emphasis is put
on the maximum norm case because of its importance.
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2. A GENERAL CONVERGENCE THEOREM

We begin with the formulation of some definitions as they are given in
Krabs [18].

DEFINITION 2.1, Let Z: A4 - P(B) be a point-to-set map from A € R”
into B< R™ with Z(a) # & for all a € 4.

(a) Zis closed at a € 4 if for each sequence (a,) in A with a, - a and
for each sequence () in B with b, € Z(a,) for almost all k and b, - b € B,
it follows that b € Z(a).

(b) Z is open at a € 4 if for each sequence (a,) in 4 with a, - a the
following holds true: to each b € Z(a) there exists a sequence (,) in B with
b, € Z(a,) for almost all k and b, — b.

(c) Z is continuous at a € 4 if Z is open as well as closed at a € 4.

Reasonably an algorithm can be defined only if an element is charac-
terized for which the algorithm shall look. This element will usually belong
to a set A which we shall call the set of solution points. In the case of
problem (1.1), one will choose A4 to be the set of stationary points, a
definition of which is given later.

From Satz 2.21 in [15] or from convergence Theorem A in (40|, the
following theorem on the convergence of an algorithm for problem (1.1) can
now be derived.

THEOREM 2.1. Let z be defined by (1.1). Further, let a set of feasible
points E< A< R” and a set A of solution points be known. Finally, let the
point-to-set map Z: E - P(E) determine an algorithm that, given a point
a, € E, generates a sequence (a,) in E with a, € Z(a, _,). Suppose

(i) all a, of the sequence (a,) lie in a compact set R < E;
(ii) if a, € A, then the algorithm terminates;
(iii) if a, € A, then for any a,,, € Z(a,), 2(a,.1) < 2(ay);
(iv) the map Z is closed at each a € R\A.
Then either the algorithm stops after finitely many steps at an G € A or it

generates an infinite sequence (a,) which possesses accumulation points and
each accumulation point of it is an element of A.

Remark 2.1. We assume throughout this paper that the algorithms in
question are constructed in such a way that they recognize if a, € A and
stop, i.e., that assumption (ii) of Theorem 2.1 is always satisfied.

Remark 2.2. The assumption CN A # @ in Satz 2.21 of [15], which is
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equivalent to R M A+ & here, is not needed for the proof, but is a conse-
quence of the other assumptions. It is clear that a sequence (a,) as charac-
terized in Theorem 2.1 cannot exist if RN\ A = .

Remark 2.3. Theorem 2.1 can be proved analogously to the quoted
theorems under the following relaxation of assumption (i):

(i") Each sequence (a,) in E with a, € Z(a, ,) has an accumulation
point in E.

The point-to-set map Z that defines an algorithm is often composed of
several mappings. Hence for the proof of the closedness of Z, the following
theorem is useful (cf. [15]).

THEOREM 2.2. Let ECR?’,. BCR™ and CC<R' Further, let
D:E— P(B) and S:B- P(C) be point-to-set maps which satisfy the
conditions:

(i) D(a)+ @ for all a€ E and S(b) # & for all b € B;
(ii) D is closed at a € E;
(iii) S is closed at each b € D(a);
(iv) For each sequence (a,) in E with a, — a, each sequence (b,) in B
with b, € D(a,) possesses an accumulation point.

Then also the composition Z= SD of D and S is closed at a € E.

3. A CLASS OF ALGORITHMS FOR THE APPROXIMATION PROBLEM

The proofs of the lemmas and theorems of this section can be found in
Appendix 2. Throughout this paper we require

ASSUMPTION A.l. The mapping F:A - C(T) is once continuously
Fréchet differentiable on A.

In the following for some members of a class of algorithms, it will be
shown that assumptions (iii) and (iv) of Theorem 2.1 are satisfied. Hence to
get convergence of the corresponding algorithms, one will have generally to
provide

ASSUMPTION A.2. All elements a, of a sequence (a,) in ECR’
generated by the algorithm under consideration lie in a compact set R € E.

Remark 3.1. Schaback [33] calls a parametrization F:A4 - C(T)
inversely compact with respect to f&€ C(T) if each sequence (@,) in A
satisfying z(a,,,) <z(a,) has an accumulation point in A. Inverse
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compactness is a global property of a family of functions which is
independent of any algorithm. To verify Assumption A.2 for a given
parametrization is by no means a trivial task.

We define now a class of algorithms for the numerical solution of problem
(1.1) through a point-to-set map Z:E - P(E) where Z=SD is a
composition of the two maps D and S which are characterized in the
following.

D:E-PEXRP)« Da)+Q forall acFE and

D)= {(b,d) € EXR?|b=a,|f— F(a)~ F'(a)d| (3-1)
- heigfa) |f — F(a) — F'(a)h]}.

Therein £2(a) is a set of the form
Q(a)={he W(a)| gla, h) € O} 3.2)
where
Q={reR|r>0} (3.3)

and W:E- P(R?) and g: EXR?— R are certain maps which will be
defined in different ways below. Further,

S:EXRP— P(E)< S(b,d)#@ for all (b,d)€E D(a) and
S, d)=1c€EE|c=b+ ad, z(c)=01<rau<11 z(b + Ad)} (3.4)

with z as in (1.1) where E and £(a) have to be such that for each
(b, d) € D(a) all c € S(b, d) lie again in E. The definition of a solution set A
is closely related to the definition of 2 or W and g, respectively.

Approximation problems with different kinds of constraints as well as a
variety of methods for their solution can be treated with the algorithmic map
Z=SD, (3.1)-(3.4), by a suitable choice of the point-to-set map
£2: E € R? - P(R?). For a better understanding let us give a simple example.
If E=R*in (1.1), we can define

gla,h)=|h] V(@ hEAXR?
and
Wa)=theR?||la+h|>0}=R’ VaeE

for any vector norm | - | such that £(a) becomes equal to R”. In this case
(3.1) means numerically the solution of an unconstrained linear approx-
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imation problem, a solution of which should yield together with (3.4) a
direction of descent. If E in (1.1) is defined as the set of solutions of linear or
nonlinear constraints, these have to be regarded in an algorithm. In our
model of an algorithm such constraints may be handied by an appropriate
choice of W (cf. (3.5), (3.6)). Finally, one may want to avoid the one-
dimensional minimization in (3.4). In this case, the linear approximation
problem in (3.1) has to be solved under certain constraints on /4 to guarantee
that each d is a downward direction. Such controls of the magnitude of d can
be described through the function g (cf. (3.8), (3.9), and Remark 3.3).
Roughly speaking, 2(a) should be of such a form that D(a)# @& for all
a € E and each d € Q2(a) with (b, d) € D(a) is (possibly in connection with
(3.4)) a direction of descent in a € E. In particular, £ has to satisfy the
assumptions of Theorem 5.2. Finally, A should be the set of stationary points
for the problem under consideration.

In this paper we discuss the nonlinear approximation problem where linear
constraints are imposed on the choice of the parameters. For this purpose let
I and J be index sets. If not emphasized otherwise, I and J can have
infinitely many elements. Let further ua)=s/a+r;, i€l and va)=
sja+r;, jE€J, be functionals on 4 with s, € R” and r, € R for all k of /
and J. Then the set of feasible points is here defined by

E={a€A|ufa)>0,i€Lva)=0, jEJ}, (3.5)
where E is assumed to be nonempty. Further, we set
W(@a)=(heR"lufa+h)>0,i€l,andva+h)=0,j€J},a€EE. (3.6)
The set A of solution points is then given by

A=f{a€E| inf |f-F@-F@hl=1/-F@l. (7

The elements of A are also referred to as stationary points. As a first result
we now obtain

LEMMA 3.1. If for a€E and h€ W(a) the inequality |f— F(a)—
F'(a)h| <|f—F(a)| is valid, then for all sufficiently small 1 >0,
a+ Ak EE as well as | f — F(a + Ah)| < | f— F(a)| holds true.

CoRoLLARY 3.1. If F(d), 4 € E, is a locally best approximation to fon T
with respect to E, then d is an element of A.

Remark 3.2. In general only very restrictive a priori assumptions or
local considerations, respectively, will guarantee that conversely F(d) is a
locally best approximation if 4 is a stationary point.
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To prove the convergence of an algorithm of the class (3.1)-(3.7) for the
approximation problem (1.1), (3.5), we shall have to ensure D(a) # @ for all
a € E and, in particular, to satisfy conditions (iv) of Theorems 2.2 and 5.1,
respectively. This suggests first to imbed the directions d with (b, d) € D(a)
into a compact set. Therefore, we define g as

gla, hy=1la)—n(h) Y (a, h) € EXR?, (3.8)

where n(h) is an arbitrary vector norm of 4 and [: E— R is a continuous
functional on E with the property

0 < l(a) Va€ E\A and 0< la) Ya€ A. (3.9

LEMMA 3.2. Let Q(a), a€E, be defined through (3.2), (3.3), (3.5),
(3.6), (3.8), and (3.9). Then the infimum in (3.1) is achieved for a h € Q(a).

From now on we assume further that either for each a € E' 1(a) is small
enough such that a + A2 € 4 for all h € Q2(a) and 1 € [0, 1] or that 4 = R?;
hence in any case a+ARE€E, 0A], for E (3.5). So under
Assumptions A.1 and A.2 the algorithm as described in the following
theorem converges in the sense of Theorem 2.1 to a stationary point of the
approximation problem (1.1), (3.5).

THEOREM 3.1. For the algorithmic map Z = SD and the solution set A
which are defined through (3.1)-(3.9), assumptions (iii) and (iv) o
Theorem 2.1 are satisfied.

Lemmas 3.1 and 3.2, Corollary 3.1, and Theorem 3.1 include obviously
the case of the unconstrained approximation problem with

E=4 and W(a) = R? forall a€E.

Now it is worth considering the case where 2(a)= W(a) for all a € E,
i.e., the case where £2(a) is possibly unbounded. To maintain the definition
(3.2), (3.3) of 2, we set for this matter

gla,h)=n(h)  V(a, h)€EEXR". (3.10)

LEMMA 3.3. If I and J have finitely many elements, then for $2(a),
a € E, given by (3.2), (3.3), (3.5), (3.6), and (3.10) the infimum in (3.1) is
attained for a h € 2(a). If, further, [F'(a)]™" exists, this statement is also
valid for arbitrary index sets I and J.

Then evidently the following theorem is true.

THEOREM 3.2. Let an algorithm be defined by (3.1}(3.7) and (3.10),
where I and J are sets with finitely many members. Provided that for each
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sequence (a,) in R converging to an a € R\A each sequence (d,) with
(by. d,) € D(a,) possesses an accumulation point in R*, conditions (iil) and
(iv) of Theorem 2.1 are fulfilled.

For the existence proof of accumulation points of such sequences (d,), the
next lemma is helpful.

LEmMmA 3.4, Let h€ R? satisfy the inequality |f— F(a)— F'(a) k|
|f—F@)| for an a€A. If [F(a)|”' exists, then }h]|
2{f=F@I[F @] ')

Hence if for all a € R the inverse [F'(a)] ™' exists and if in addition the
mapping a — | [F'(a)]'| from R? into R is continuous, then the algorithm
of Theorem 3.2 becomes a special case of that one in Theorem 3.1 with

Ka)=2|/~F@II[F (@] ']

Instead of verifying the continuity of the map a— ||F’(a)] '}, it would be
sufficient to show that there exists a constant N with

VAWAN

|[F'(a)]"'|<N forall a€R (3.11)

which would suggest setting l(a) = 2N | f — F(a)|.

LEMMA 3.5. Provided that F: A< RP - R" with n> p possesses a
continuous Fréchet derivative F'(a) with rank(F'(a)) = p for all elements
a € A, a constant N exists such that (3.11) holds true.

Consequently, with the assumptions of Lemma 3.5 we can derive from
Theorem 3.2 and Lemma 3.3.

COROLLARY 3.2. Let F:ACSR? - R" with n> p have a continuous
Fréchet derivative F'(a) for all a € A and let rank(F'(a)) = p on A. Then for
the algorithm determined through (3.1)}-(3.7) and (3.10), assumptions (iii)
and (iv) of Theorem 2.1 are satisfied.

We finish this section with the following

Remark 3.3. From Lemma 3.1 it can be comprehended that the
mapping S (3.4) is needed to guarantee assumption (iii) of Theorem 2.1,
namely, that a, & A implies z(a,,,) < z(a,) for a,,, € S(b;,d,). Other
choices of S are possible, but are not discussed here. It is also clear that S
can be omitted completely and that Z can be defined by

Z@)=G@)={cER?|c=a+d,|f—F(a)— F'(a)d|
= inf |f—F(a)—F'(a)hl}

heQla)
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if 2(a,), a,€ A, can be controlled in such a way that already for
a, ., € G(a,) the condition z(a,,,) < z(a,) holds true. In this case we speak
of the full-step method.

4, GENERAL DISCUSSION

In this section we are going to refer to a variety of well-known algorithms
which belong to the class of methods considered here or are basically of the
same kind. So we shall not mention, in particular, if in a specific method the
determination of an appropriate step length happens in another way than
here in (3.4). Further, in practice a continuous functional /: £ —» R with (3.9)
will usually not be given explicitly, but upper bounds u, = /(a,) for the length
of the directions of descent will be computed by a suitable rule only at the
discrete points a, € E of the iteration. However, then a continuous functional
! on E passing through the points (a,,u,) € R? X R and satisfying (3.9)
could be constructed a posteriori provided that a constant N exists with
0<u,=la)<Nfora, &A and 0y, =Il(a,) <N if a, € A. Moreover, it
is clear that the global convergence of the algorithms in question is
independent of the sizes of such g,’s as long as the a, lie in E again.

The algorithms of Theorems 3. 1 and 3.2 generalize in different ways
those we are referring to below: they are defined for all norms, they are valid
for the discrete as well as the uniform nonlinear approximation problem with
infinitely many linear constraints, and finally they permit a variety of
strategies to control the length of the directions of descent in each iteration.
We are furthermore convinced that the general algorithm characterized by
(3.1)~(3.4) and the concept of its proof can be exploited for a variety of
other problems with different kinds of constraints including nonlinear ones as
they are, for example, treated in Cromme [9]. The list of references given
here is by no means believed to be complete. For practical purposes, some
additional information is given. Thereby the discussion of the maximum
norm case is somewhat emphasized because the corresponding class of
algorithms has, in particular, there turned out to be very successful.

To our knowledge Schaback [33] is the only one who considered the
global convergence of an algorithm of the class (3.1)~(3.4) independently of
the norm. The algorithm in [33] can be obtained by setting

W(a)=R*? and lla)=K

for a constant XK.

Remark 4.1.  Satz 1 in [33] just proves assumption (y,) of Coroilary 3 in
Huard [16] which is an extension of Zangwill’s convergence theorem. Hence

640/36/3.5
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convergence of Schaback’s aigorithm can be concluded from Corollary 3 in
[16] together with Satz 1 in [33].

If not mentioned otherwise, the convergence results of the algorithms we
are referring to below concern only the discrete case of the unconstrained
approximation problem. Let us now first discuss the case of the L _-norm.
The algorithm (3.1)~(3.4) with 2(a) = R” for all a € R’ is widely known as
the Osborne-Watson algorithm [24]. A slightly different version of this
algorithm was already suggested before by Ishizaki and Watanabe [17];
however, without any results on its convergence. In [24] a proof of
convergence is presented; however, the assumptions for the convergence as,
for instance, the existence of constants m and K in Lemma 2.4 there, are not
clearly indicated. Further, it can be shown easily by an example that in
contrast to Lemma 2.2 there, even the condition | F;(d)} > 0 for all i at a
stationary point d € R” is not sufficient for the nonexistence of directions of
descent at d. Another convergence proof of the Osborne—~Watson algorithm
can be found in Anderson [1]. However, the existence of a constant
“reference” which is needed for the verification of Lemma 5.1.5 cannot be
concluded from Lemma 5.1.4 as is claimed there, but has to be provided as
an additional assumption, This is done in Anderson and Osborne [2]| where
the convergence proof of [1] is extended to so-called polyhedral norms.
Under assumptions which are stronger than those of Section 3, it is shown
there that each limit point of a sequence (a,) generated by the algorithm is a
stationary point. Under the additional assumption of a so-called “multiplier
rule,” local quadratic convergence of the full-step method is proved where
the corresponding proofs of Osborne [26] and Anderson [1] are extended to
the polyhedral norm case. The results of Anderson, Osborne, and Watson
are thoroughly discussed in Osborne and Watson [30] where also
convergence results are obtained for smooth, strictly convex, and monotonic
norms which include the L -norms for 1 < p < oo. Closely related to the
papers just mentioned is the work of Watson [36], where an alternative
procedure is suggested for the case that already a reasonably good approx-
imation is available.

Another proof of local quadratic convergence of the Osborne-Watson
algorithm for the uniform norm is given by Cromme [7]. The assumptions in
[7] are that a smoothness condition is satisfied, that F(4) is a strongly
unique locally best approximation to fon T with respect to 4, and that F’(4)
satisfies a regularity condition. In [8] and [10] Cromme shows that the
assumption of strong uniqueness is crucial for a locally good behavior of
certain iterative procedures.

Another group of papers deals with modifications of the Osborne—Watson
algorithm, where the set of feasible points of the linear minimization probiem
in (3.1) is not the full space R?, but a bounded region. In our terminology
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Madsen [20] considers the case W(a) =R’ and n(h) =] h|,,, where in each
iteration the y, = /(a,) are altered in such a way that for the full-step method
a convergence result that is in character of the same kind as Theorem 3.1
here can be obtained. Madsen and Schjaer—Jacobsen [22] generalized the
algorithm of [20] to the case W(a) (3.6) here where [ and J have finitely
many indices. In addition, the authors of [22] show local quadratic
convergence of their algorithm provided that a certain system of functions
satisfies Haar’s condition at a limit point of a sequence (a,) generated by the
algorithm. For practical purposes, let us mention that there exist also
modifications of the algorithms in [20] and [22] by Madsen [21] and Hald
and Schjaer-Jacobsen [12], respectively, in which the calculation of
derivatives is avoided. Further Hald and Madsen [13] combine the method
in [20] with a method using second order information; in this connection,
see also the survey article of Hettich [14].

A member of the group of algorithms discussed at last is basically also the
Levenberg-like method of Anderson |1] which was generalized to polyhedral
norms by Anderson and Osborne |3]. A modification of the algorithm in [3]
was presented by Watson [37] where second derivatives are taken into
account. In all these algorithms the sets of feasible directions in the linear
subproblems are bounded in a way which was suggested by Levenberg for a
least squares algorithm.

Finally, we want to mention that there exists a class of algorithms for the
nonlinear Chebyshev problem which uses the so-called local Kolmogoroff
criterion for the computation of the directions of descent.

See, for instance, Schultz [34], where more references can be found, and
the comments in Hettich [14]. It is known that for 4 € 4 the condition

|f—F@|<|f—F@)—F(@h] VYhER

and the local Kolmogoroff criterion

min (f(x) — F(d x)) F/(4,x)h<0  YhER?,

xel(d)
where

@)= {xEB||f(x) = Fla,x)|=|f-F@)l}, a€A4,

are equivalent and necessary for F(d) to be a locally best approximation to f
on T with respect to 4 (see, e.g. Reemtsen [31].) If now

(f(x)—F(a,x)) F'(a,x)d >0 vYxel(a) 4.1)

is valid for a d € R?, it can be easily verified that d is a direction of descent
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at a € A. And it can further be shown that if | d| is smaller than a certain
number, (4.1) implies

|.f— Fla) - F'(a)d | <|f - F(a)|

(see [31).) So it might be possible to fit some of those algorithms in our
model by choosing 2 in a proper way.

Let us close with some remarks on other norms. For the discrete
unconstrained L,-approximation problem, Osborne and Watsen [25],
Osborne [26], Anderson and Osborne [2], and Osborne and Watson [30)]
derive results on the convergence of algorithm (3.1)-(3.4) with Q(a)=R?,
analogously to the L  case. A Levenberg-like method where the directions of
descent are bounded in some sense is presented in Anderson and Osborne
{3]

In the case of | - | being the L,-norm, a variety of well-known techniques
is summarized and extended by algorithm (3.1)-(3.4). The literature
especially on modifications of Newton’s method is so extensive that we can
confine ourselves to only the most elementary instances. For example, if F is
a mapping from R” into R" (p < n), the problem of finding

min | /- F(a)~ F'(a)h]|

is equivalent to the determination of A = [F'(a)|* (f — F(a)), where [F'(a)]"*
is the pseudo-inverse of F'(a) (see Luenberger [19]); hence in the case
2(a) =R? the full-step method (3.1)-(3.4) just becomes Newton’s method
for p=n (e.g., in [19]) and the Newton-Raphson method for p <n
(Ben-Israel [6].) For more information and results on the respective
convergence behavior, we refer, in particular, to Osborne [27]; but compare
also Osborne [26] and Osborne and Watson [30]. Generalizations of
Newton’s method are the Levenberg-like algorithms in Osborne [28,29]
which include the methods of Levenberg, Marquardt, and Morrison as
special cases (for references, see [28].) Therein again the magnitude of the
directions of descent is controlled in a certain way.

The convergence behavior of algorithm (3.1)~(3.4) with 2(a) = R” for the
L, norms, 1 < p < o0, is investigated in Osborne and Watson [30].

Finally, we give some references to algorithms solving the linear
subproblem in (3.1) in the discrete case. For the linear unconstrained L -
problem, Barrodale and Young [4] supply a modified simplex algorithm;
linear constraints can be added there easily. By the authors of [4] in addition
an algorithm for linear L, -approximation was developed which was
improved and extended to problems with linear constraints by Barrodale and
Roberts [5]. Wolfe [38] analyzes the convergence of an algorithm for the
unconstrained L -approximation, 1< p < 2, that had been studied by other
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authors before. Finally, Fletcher ef al. [11] derive a method for the solution
of the L -problem without constraints in the case 2 < p < oo which reduces
to the solution of the normal equations for p=2.

Since this paper was written, several related papers and books have been
published. We want to mention here merely the books of G. A. Watson
“Approximation theory and numerical methods” (Chichester—New York—
Brisbane-Toronto, 1980) and of R. Hettich and P. Zencke “Numerische
Methoden der Approximation und semi-infiniten Optimierung” (Stuttgart,
1982); both have long chapters on algorithms and offer an extensive list of
references. They are in particular recommended for L -approximation and
its numerical aspects.

APPENDIX |

For the proof of the closedness of the mapping Z: E— P(E) in the
convergence Theorem 2.1, the following results out of Krabs [18] are helpful.

Let X and Y be metric spaces, U a normed vector space, and
D: XX Y- R, g: X X Y- U given mappings. Further, let W: X - P(Y) be a
point-to-set map from X into P(Y). Finally, Q shall be a nonempty subset of
U. Then for each x € X, we define

Qx)={yeWx)|glx, y)EQISY

and assume 2(x)# @ for all x € X. With these preliminaries we consider
now the problem to minimize the function @(x, -) on £2(x) and define the
optimal value as

m(x) = inf{P(x, y)| y € 2(x)}
and the set of optimal solutions as
O(x)={y € 2(x)| P(x, y) = m(x)}.

Beside the notion of the continuity of a point-to-set map, which was defined
by Definition 2.1, we shall need for the formulation of the next theorems the
following

DErFINITION 5.1. (a) @: X X Y > IR is said to be continuous with respect
to {X} X 2(X) if for all sequences (x,) in X with x, —» X and all sequences
(y)) in Y with y, € Q(x,) for almost all £k and y, - § for a y& Q(x),
lim,_, , ®(x,, y,)= @(X, ) holds true.

(b) g: X X Y- U is said to be continuous with respect to {£} X W(X)
if for all sequences (x,) in X with x, - X and all sequences (y,) in Y with
Yo VE W(X), lim, _ , g(x,, ¥) = g(X, §) holds true.
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Then Satz 2.4 in |18] says:

THEOREM 5.1. If

(i) Q is continuous at X,
(ii) @ is continuous with respect to {X} X 2(X),

(iii) for each sequence (x,) in X with x, — X the corresponding sets of
optimal solutions O(x,) are nonempty, and

(iv) each sequence (y,) in Y with y, € O(x,) for almost all k possesses
an accumulation point,

then the function x — m(x) is continuous at X.

For the continuity of £ at X, the assumptions of the next theorem are
sufficient (Satz 4.1 and Satz 4.2 in [18]):

THEOREM 5.2. If
(i) W:X- P(Y) is continuous at X € X,
(i) Q has a nonempty interior Q and
QR ={ye W | g, y) € O},

where B is the closure of B,

(iii) Q is a closed set,
(iv) g XX Y- U is continuous with respect to |} X W(x),

then the mapping x — Q(x) is continuous at Xx.

APPENDIX 2

Proof of Lemma 3.1. First we observe that W(a) (3.6) is a convex set
that encloses the origin. Therefore, if A € W(a) then also Ak is contained in
W(a) for all A€ [0,1]. Hence for all sufficiently small 1 >0 with
a+ Ah € A, a + Ah belongs to E. The remainder of the proof is then a conse-
quence of the estimation

| /= Fla + AR)| = (1 — A)(f — F(a)) + A(f — F(a) — F'(a)h)
+ (F(a) — F(a + Ah) + F'(a)Ah)]
A=) f~-F@l+Alf—F@)—F(ah|+o@|r])
=|/—F@|—-AC+o|h]) <|Sf—F(a)
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for all sufficiently small 1€ (0,1|, where C=|f-F(a)|—
| f—F(a) - F'(a)h].

Proof of Lemma 3.2. W(a) is nonempty since 0 € W(a) and in any case
a closed set. Consequently, £2(a) is here a nonempty compact set. Since
further the map h— | f— F(a)— F'(a)h| is continuous, the statement of
Lemma 3.2 can be concluded from the theorem of Weierstrass.

Proof of Lemma 3.3. Let
H={F'(a)h| h € 2a)}.

If 2(a) = R*, H is obviously closed. If otherwise I and J have finitely many
elements, then Q2(a) is the set of solutions of a finite system of linear
inequalities, i.e., a so-called “polyhedral” convex set in R”. By Theorem 19.1
in Rockafellar [32], 2(a) can, therefore, be “finitely generated” which means
that there exist vectors e,,.., €, €., ... €, in R” and a fixed integer £,
0 < k < m, such that

Qa)= 32 yieily,+--~+y,(=l,y,->Ofori=l,...,m€.

i=1

Consequently,

H=

m
S vF@e)n+ - +y=1y>0fori= lm€
i=1

The F'(a)e;, i=1,..,m, generate a linear subspace of C(I) which is
isomorphic to a space R®. The corresponding isomorphic image of H in R*
is then again a finitely generated and hence a closed set (see [32]). Conse-
quently, H has to be closed, too. One can now further easily verify that with
p=F'(a)h

inf | f—F(a)— F'(a)h| = inf | f — F(a)— F'(a)h |
pEH peV,
where
Vi={peH||F(@)h|<|f—Fla)—F(a)h*|+|f - F@)l}
for £* € 2(a) arbitrary, but fixed. Since ¥, is compact and the mapping
F'(a)yh— | f— F(a)—F'(a)h| is continuous, we can apply Weierstrass’
theorem. If now 7 and J are arbitrary and if [F'(a)] ™' exists, we can infer as

follows: Since 0 € W(a),

inf |/~ Fla)~F'(@)h|= inf |/~ Fl@)~ F'(@h]|

hew(a)
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with
Vi,={h€e Wa)||f—F(a) - F(a)h| <| f - F(a)|}.

V, is closed and by virtue of Lemma 3.4 also bounded.

Proof of Lemma 3.4.
|2l =1[F(@)] 'Far]|<{Fa)] '|| Fa)h]
<HF@) 7' I(f = Fla)— F'(a)h) — (f — F(a))|
L2lf=F@)l[[F'(a)] ']

Proof of Lemma 3.5. If L(a)= [F'(a)]"|F’(a)], then rank(L(a)) = p for
all a € A. Henceforth, for a; € R fixed L ~'(a;) exists. By assumption L ~'(a)
exists also for all a € B; of an open ball B; < 4 centered at a; so that further

K;=sup |[L™'(a)|

aeB;

is a finite number. By the theorem of Heine—Borel, there are now finitely
many B’s which cover R. Hence a constant K exists such that [L™'(a)] <K
for all a € R. Since the map a - [F’(a)]” is continuous on R, we can finally
conclude

HF @] [=1[(F @) F'@)] "IF @]}
SILT@IIF @) ISV VYa€R.

where [F'(a)]* denotes the pseudoinverse of F'(a).

Proof of Theorems 3.1 and 3.2. In the following, 2.1(iii) refers to
assumption (iii) of Theorem 2.1, etc.

2.1(iii). Let a, € R\A be fixed.

(a) If g is defined by (3.10) as in Theorem 3.2, assumption 2.1(iii) is a
consequence of Lemmas 3.1 and 3.3.

(b) Let now g (3.8), (3.9) be as in Theorem 3.1. Since a, & A, there is
an h € W(a,) such that

| f—F(a)—F(a)h| <|f—Fa)ls (6.1)
(6.1) yields further
| f—F(a,) — F'(a)) AR |
<AV —Fla) —F'la)h]+ (1 =) | f— Fla)l
<A f=Fla)l+ QA= f=Fayl=1r-F@)l (6.2)
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for all A € (0, 1]. Since Ak, h € W(a,), is element of 2(a,) for all sufficiently
small A > 0, we can conclude from (6.2) that

inf | f—F(a,)—F(a)h]| <|f—Fa)l; (6.3)

heQ(ay)
(6.3) together with Lemmas 3.1 and 3.2 then guarantees

min | f—F(be+4d)| </ = Fla)l V(b d;) € D(ay).

0<ALE

2.1(iv). For the proof of the closedness of the point-to-set map Z at
each a € R\A, we verify the assumptions of Theorem 2.2.

2.2(G). E and (a), a € E, are nonempty, so that D(a)+ @ for all
a € E is a consequence of Lemmas 3.2 and 3.3, respectively. S(b, d) + @ for
all (b, d) € E X R? is then obvious under our assumptions.

2.2(ili). To prove the closedness of S at each (b, d) € D(a), a € R\A,
one can follow the proof of Lemma 2.2 in [15]. Note that here d# 0 and §
is a mapping from E X R? into P(E).

2.2(iv). (a) ! (3.8), (3.9) is continuous on R and, therefore, achieves
its maximum there. Hence for all (b, d) € D(a) and all a € R, we have

n(d) < max l(a),

i.e., all possible directions d € 2(a), a € R, lie in a compact set.
(b) In Theorem 3.2 this condition is taken into the formulation of the
theorem as an assumption.

2.2(ii). D is closed at each a € R\A, if for each sequence (q,) in R,
a,—a, and each sequence (b,,d,)€ D(a,) with d,—d, it follows that
(b, d) € D(a). Consequently, D is closed at a € R\ if a, — a implies that

lim m(a,) = lim | f— F(a,) — F'(a,)d,|
k-0 k- o0

= lim inf |f—Fa)~F(@)h|

k-0 hefa,

inf | f—F(a)—F'(a)h]

heQia)

=/~ F(a) — F'(a)d| = m(a).
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For the proof of this implication we verify the assumptions of Theorem 5.1.
Therefore, we set X=R, Y=R” and U= R and define

@(a, h)=|f—F(a)— F'(a)h|
and
O(a) = {d € 2(a) || f — F(a) — F'(a)d | = m(a)).
(a)# @ for all a € R is obviously satisfied for £2 as in Theorems 3.1 and
3.2
5.1(ii).

||/ = Fla)=F'(a)h| =/~ Fla) - F'(a,)h ||
<|(F(a) — F(ay)) — (F'(a) h — F' (@) hy)|
| F(a) — Fla)| + | F'(a)hy, — )| + | (F' (@) — F'(@) k|

<
<|F@) = Fla)| + | F'@] |k — k| +|F'(a)) - F' @] (1 2] + &).

5.1(iii) was proved with Lemmas 3.2 and 3.3.
5.1(iv). See 2.2(iv) above.

5.1(1). The continuity of the mapping 2: E —» P(R”) at each a € R\4
will be proved by checking the assumptions of Theorem 5.2.

5.2(1). Let W:E — P(RP) be defined by (3.5), (3.6).
(a) The closedness of W(a) at each a € R\A results directly from the
continuity of the functionals u; and v; for all i € I and j € J, respectively.

(b) W is open at each a € R\A since for each sequence (a,) in R with
a, — a and each 4 € W(a), the sequence (k,) where A, = h + (a — a,) is such
that h, € W(a,) and h, - h.

5.2(ii). For a € R\A, W(a) has to contain an element h # 0 beside the
zero element and /(a) has to be a positive number. Therefore, both sets

B, = {h€ W(a)| n(h) < l(a)}, B, = {h € W(a)|n(h) >0}
are nonempty. That according to its definition, £2(a) equals the closure of B,
and B,, respectively, can now be comprehended easily.
5.2(iii) is obvious for Q (3.3).

5.2(iv). Let (a,) be a sequence in R with a, - a, a € R\4, and (h,) be
a sequence in R” such that A, - h € W(a).
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(a) Let g be defined through (3.8), (3.9) as in Theorem 3.1. Then

because of the continuity of the maps /: E - R and n: R? —» [, it results that

2.

IS.
16.
17.

lim gag, h) = lim (ia) —n(h) = I(a) — n(h).
(b) For g (3.10) (Theorem 3.2) we have analogously

klim glay, b)) = klim n(h,) = n(h).
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